Controllable coherent population transfers in superconducting qubits for quantum computing
نویسندگان
چکیده
We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages. These evolution-time insensitive transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial atoms provide an efficient approach to design the required adiabatic pulses.
منابع مشابه
Coherent operation of coupled superconducting flux qubits
We study the quantum operation of coupled superconducting flux qubits under a microwave irradiation. The flux qubits can be described as magnetic dipole moments in the limit of weak microwave field amplitude consistent with usual experimental situations. With the Hamiltonian for coupled qubits under a microwave field, we show that a strong coupling enables to realize the high performance contro...
متن کاملFlux-based superconducting qubits for quantum computation
Superconducting quantum circuits have been proposed as qubits for developing quantum computation. The goal is to use superconducting quantum circuits to model the measurement process, understand the sources of decoherence, and to develop scalable algorithms. A particularly promising feature of using superconducting technology is the potential of developing high-speed, on-chip control circuitry ...
متن کاملAtomic interface between microwave and optical photons
A complete physical approach to quantum information requires a robust interface among flying qubits, longlifetime memory, and computational qubits. Here we present a unified interface for microwave and optical photons, potentially connecting engineerable quantum devices such as superconducting qubits at long distances through optical photons. Our approach uses an ultracold ensemble of atoms for...
متن کاملSuperconducting Circuits and Quantum Computation
Introduction Superconducting circuits are being used as components for quantum computing and as model systems for nonlinear dynamics. Quantum computers are devices that store information on quantum variables and process that information by making those variables interact in a way that preserves quantum coherence. Typically, these variables consist of two quantum states, and the quantum device i...
متن کاملControllable scattering of a single photon inside a one-dimensional resonator waveguide.
We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 100 11 شماره
صفحات -
تاریخ انتشار 2008